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1. Introduction

Sticky prices are an important ingredient in modern dynamic general equilibrium models, including

those used by central banks for policy analysis. But how best to model price stickiness, and to what

extent stickiness of individual prices implies rigidity of the aggregate price level, remains controversial.

Calvo’s (1983) assumption of a constant adjustment probability is popular for its analytical tractability,

and implies that monetary shocks have large and persistent real effects. However, Golosov and Lucas

(2007, henceforth GL07) have argued that microfounding price rigidity on a fixed “menu cost”and

calibrating to microdata implies that monetary shocks are almost neutral.

This paper calibrates and simulates a general model of state-dependent pricing that nests the Calvo

(1983) and fixed menu cost (FMC) models as two opposite limiting cases, with a continuum of smooth

intermediate cases lying in between. As in Dotsey, King, and Wolman (1999) and Caballero and

Engel (2007), the setup rests on one fundamental property: firms are more likely to adjust their prices

when doing so is more valuable. Implementing this assumption requires the selection of a parameterized

family of functions to describe the adjustment hazard; the exercise is disciplined by fitting the model to

the size distribution of price changes found in recent US retail microdata (Klenow and Kryvtsov 2008;

Midrigan 2011; Nakamura and Steinsson 2008).1 One of the calibrated parameters controls the degree

of state dependence; matching the smooth distribution of price changes seen in microdata requires

rather low state dependence. Therefore, impulse responses reveal substantial monetary nonneutrality,

with real effects only slightly weaker than the Calvo model implies.

The impulse response analysis considers a number of issues unaddressed by previous work on state-

dependent pricing. GL07 restricted attention to iid money growth shocks; this paper also considers the

autocorrelated case, and shows that the shape and persistence of responses is primarily determined by

the degree of state dependence, not by the autocorrelation of the driving process. Moreover, this paper

also studies monetary policy governed by a Taylor rule, as opposed to an exogenous money growth

process, which reinforces the conclusion that a calibrated model of state-dependent pricing implies

nontrivial real effects. This paper also decomposes inflation into an “intensive margin” relating to

1A companion paper, Costain and Nakov (2011), discusses the calibration in greater detail, documenting the steady-
state model’s fit to cross-sectional microdata on price adjustments, both for low and high trend inflation rates.
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the average desired price change, an “extensive margin” relating to the fraction of firms adjusting,

and a “selection effect” relating to which firms adjust. This decomposition corroborates the claim of

GL07, which was challenged by Caballero and Engel (2007), that the selection effect is crucial for the

behavior of the FMC model. A fourth contribution of this paper is to argue that prices respond slowly

to sector-specific as well as aggregate shocks, despite some recent empirical claims to the contrary. The

paper also implements an algorithm for computing heterogeneous-agent economies which is well-suited

to modeling state-dependent pricing but has not yet been applied in this context.

1.1. Relation to previous literature

Most previous work on state-dependent pricing has obtained solutions by limiting the analysis,

either focusing on partial equilibrium (e.g. Caballero and Engel, 1993, 2007; Klenow and Kryvtsov,

2008), or assuming firms face aggregate shocks only (e.g. Dotsey et al., 1999), or making strong

assumptions about the distribution of idiosyncratic shocks (e.g. Caplin and Spulber, 1987; Gertler and

Leahy, 2005). But Klenow and Kryvtsov (2008) argue convincingly that firms are often hit by large

idiosyncratic shocks. And while heterogeneity may average out in many macroeconomic contexts, it is

hard to ignore in the debate over nominal rigidities, because firm-level shocks could greatly alter firms’

incentives to adjust prices. GL07 were the first to confront these issues directly, by studying a menu

cost model in general equilibrium with idiosyncratic productivity shocks. They obtained a striking

near-neutrality result. However, their model’s fit to price data is questionable, as our Figure 1 shows.

A histogram of retail microdata displays a wide range of price adjustments, whereas their FMC model

generates two sharp spikes of price increases and decreases occurring near the (S,s) bounds.

Other micro facts have been addressed in more recent papers on state-dependent pricing. Eichen-

baum, Jaimovich, and Rebelo (2011) and Kehoe and Midrigan (2010) modeled “temporary” price

changes (sales), assuming that these adjustments are cheaper than other price changes. However,

they ultimately conclude that the possibility of sales has little relevance for monetary transmission,

which depends instead on the frequency of regular non-sale price changes. Guimaraes and Sheedy’s

(2011) model of sales as stochastic price discrimination has the same implication. Thus, since the

model developed in this paper has no natural motive for sales, it will be compared to a dataset of



Distributional dynamics under smoothly state-dependent pricing 4

“regular” price changes from which apparent sales have been removed. In another branch of the liter-

ature, Boivin, Giannoni, and Mihov (2009) and Mackowiak, Moench, and Wiederholt (2009) estimate

that prices respond much more quickly to sectoral shocks than to aggregate shocks. However, the

present paper performs a Monte Carlo exercise that shows that this finding should be treated with

caution. Remarkably, even when the true response to a sector-specific shock is lagged and transitory,

the estimation routine of Mackowiak et al. can erroneously conclude that sector-specific shocks have

an immediate, permanent impact on prices.

Our need to allow for firm-specific shocks complicates computation, because it implies that the

distribution of prices and productivities across firms is a relevant state variable. This paper shows

how to compute a dynamic general equilibrium with state-dependent pricing via the two-step algorithm

of Reiter (2009), which calculates steady-state equilibrium using backwards induction on a grid, and

then linearizes the equations at every grid point to calculate the dynamics. This approach avoids some

complications (and simplifying assumptions) required by other methods. In contrast to GL07, it is

not necessary to assume that aggregate output stays constant after a money shock. In contrast to

Dotsey, King, and Wolman (2008), it more fully exploits the recursive structure of the model, tracking

the price distribution without needing to know who adjusted when. In contrast to the method of

Krusell and Smith (1998), used by Midrigan (2011), there is no need to find an adequate summary

statistic for the distribution. In contrast to Den Haan (1997), there is no need to impose a specific

distributional form. The nonlinear, nonparametric treatment of firm-level heterogeneity in Reiter’s

algorithm makes it straightforward to calculate the time path of cross-sectional statistics, like our

inflation decomposition; the linearization of aggregate dynamics makes it just as easy to analyze a

variety of monetary policy rules or shock processes as it would be in a standard, low-dimensional

DSGE model.

Several closely related papers have also remarked that FMCs imply a counterfactual distribution

of price adjustments, in which small changes never occur. They proposed some more complex pricing

models to fix this problem, including sectoral heterogeneity in menu costs (Klenow and Kryvtsov,

2008), multiple products on the same “menu” combined with leptokurtic technology shocks (Midrigan,

2011), or a mix of flexible- and sticky-price firms plus a mix of two distributions of productivity shocks
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(Dotsey et al., 2008). This paper proposes a simpler approach: we just assume the probability of price

adjustment increases with the value of adjustment, and treat the hazard function as a primitive of

the model. A family of hazard functions with just three parameters suffices to match the distribution

of price changes at least as well as the aforementioned papers do. Our setup can be interpreted as

a stochastic menu cost (SMC) model, like Dotsey et al. (1999) or Caballero and Engel (1999); under

this interpretation the hazard function corresponds to the c.d.f. of the menu cost.2 Alternatively, our

setup can be seen as a near-rational model, like Akerlof and Yellen (1985), in which firms are more

likely to make mistakes when they are not very costly; in this case the hazard function corresponds

to the distribution of error values.3 Under either interpretation, the key point is that the adjustment

hazard increases smoothly with the value of adjusting, in contrast with the discontinuous jump in

probability implied by the FMC model. An appropriate calibration of the smoothness of the hazard

function yields a smooth histogram of price changes consistent with microdata; this smoothness is the

same property that eliminates the strong selection effect found by GL07. Thus, none of the additions

Dotsey et al. and Midrigan make to the FMC framework are crucial for their most important finding:

a state-dependent pricing model consistent with observed price changes implies nontrivial real effects

of monetary shocks, similar to those found under the Calvo framework.

2. Model

This discrete-time model embeds state-dependent pricing by firms in an otherwise-standard New

Keynesian general equilibrium framework based on GL07. Besides the firms, there is a representative

household and a monetary authority that either implements a Taylor rule or follows an exogenous

growth process for nominal money balances.

The aggregate state of the economy at time t, which will be specified in Section 2.3., is called

Ωt. Time subscripts on aggregate variables will indicate dependence, in equilibrium, on aggregate

conditions Ωt. For example, consumption is denoted by Ct ≡ C(Ωt).

2For estimation purposes, Caballero and Engel usually assume that the probability of adjustment depends on the
distance of the choice variable from some target level, but this is just an approximation to an underlying model in which
the adjustment probability depends on the value of adjustment, as in our setup.

3The two interpretations imply slightly different Bellman equations: in the first case, but not in the second, a flow
of menu costs is subtracted out of the firm’s flow of profits.
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2.1. Household

The household’s period utility function is 1
1−γC

1−γ
t −χNt+ν log(Mt/Pt), where Ct is consumption,

Nt is labor supply, and Mt/Pt is real money balances. Utility is discounted by factor β per period.

Consumption is a CES aggregate of differentiated products Cit, with elasticity of substitution ε:

Ct =

{∫ 1

0

C
ε−1
ε

it di

} ε
ε−1

. (1)

The household’s nominal period budget constraint is∫ 1

0

PitCitdi+Mt +R−1
t Bt = WtNt +Mt−1 + Tt +Bt−1 + Ut, (2)

where
∫ 1

0
PitCitdi is total nominal consumption. Bt is nominal bond holdings purchased at t, paying

interest rate Rt− 1 at time t+ 1. Tt is a nominal lump-sum transfer consisting of seignorage revenues

from the central bank plus dividend payments from the firms.

Households choose {Cit, Nt, Bt,Mt}∞t=0 to maximize expected discounted utility, subject to the

budget constraint (2). Optimal consumption across the differentiated goods implies

Cit = (Pt/Pit)
εCt, (3)

where Pt is the price index

Pt ≡
{∫ 1

0

Pit
1−εdi

} 1
1−ε

, (4)

so total nominal spending can be written as PtCt =
∫ 1

0
PitCitdi.

Optimal labor supply, consumption, and money use imply the following first-order conditions:

χ = C−γt Wt/Pt, (5)

R−1
t = βEt

(
PtC

−γ
t+1

Pt+1C
−γ
t

)
, (6)

1− νPt

MtC
−γ
t

= βEt

(
PtC

−γ
t+1

Pt+1C
−γ
t

)
. (7)
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2.2. Monopolistic firms

Each firm i produces output Yit using labor Nit as its only input, under a constant returns tech-

nology: Yit = AitNit. Ait is an idiosyncratic productivity process that is AR(1) in logs:

logAit = ρ logAit−1 + εait, (8)

where 0 ≤ ρ < 1 and εait ∼ i.i.d.N(0, σ2
a). Firm i is a monopolistic competitor that sets a price Pit,

facing the demand curve Yit = CtP
ε
t P
−ε
it , and must fulfill all demand at its chosen price. It hires in a

competitive labor markets at wage rate Wt, generating profits

Uit = PitYit −WtNit =

(
Pit −

Wt

Ait

)
CtP

ε
t P
−ε
it ≡ U(Pit, Ait,Ωt) (9)

per period. Firms are owned by the household, so they discount nominal income between times t and

t+ 1 at the rate β P (Ωt)C(Ωt+1)−γ

P (Ωt+1)C(Ωt)−γ
, consistent with the household’s marginal rate of substitution.

Let V (Pit, Ait,Ωt) denote the nominal value of a firm at time t that produces with productivity

Ait and sells at nominal price Pit. Prices are sticky, so Pit may or may not be optimal. However, we

assume that whenever a firm adjusts its price, it chooses the optimal price conditional on its current

productivity, keeping in mind that it will sometimes be unable to adjust in the future. Hence, the value

function of an adjusting firm, after netting out any costs that may be required to make the adjustment,

is V ∗(Ait,Ωt) ≡ maxP V (P,Ait,Ωt). For clarity, it helps to distinguish the firm’s beginning-of-period

price, P̃it ≡ Pi,t−1, from the end-of-period price at which it sells at time t, Pit, which may or may not

be the same. The distributions of prices and productivities across firms at the beginning and end of t

will be denoted Φ̃t(P̃ , A) and Φt(P,A), respectively.

The gain from adjusting at the beginning of t is:

D(P̃it, Ait,Ωt) ≡ max
P

V (P,Ait,Ωt)− V (P̃it, Ait,Ωt). (10)

The main assumption of our framework is that the probability of price adjustment increases with the

gain from adjustment. The weakly increasing function λ that governs this probability is taken as

a primitive of the model. Invariance of λ requires that its argument, the gain from adjustment, be

written in appropriate units. As was mentioned in the introduction, this setup can be interpreted

as a stochastic menu cost model, or as a model of near-rational price decisions. In the SMC case,
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the labor effort of changing price tags or menus is likely to be a large component of the cost; in the

near-rational case, the adjustment probability should depend on the labor effort required to obtain

new information or to recompute the optimal price. Under either interpretation, the most natural

units for the argument of the λ function are units of labor time. Thus, the probability of adjustment

will be defined as λ
(
L
(
P̃it, Ait,Ωt

))
, where L

(
P̃it, Ait,Ωt

)
= D(P̃it,Ait,Ωt)

W (Ωt)
expresses the adjustment

gain in time units by dividing by the wage. The functional form for λ will be specified in Sec. 2.2.1.

The value of selling at any given price equals current profits plus the expected value of future

production, which may or may not be sold at a new, adjusted price. Given the firm’s idiosyncratic

state variables (P,A) and the aggregate state Ω, and denoting next period’s variables with primes, the

Bellman equation under the near-rational interpretation of the model is

V (P,A,Ω) =

(
P − W (Ω)

A

)
C(Ω)P (Ω)εP−ε + (11)

βE

{
P (Ω)C(Ω′)−γ

P (Ω′)C(Ω)−γ

[(
1− λ

(
D(P,A′,Ω′)
W (Ω′)

))
V (P,A′,Ω′) + λ

(
D(P,A′,Ω′)
W (Ω′)

)
max
P ′

V (P ′, A′,Ω′)

]∣∣∣∣A,Ω} .
Here the expectation refers to the distribution of A′ and Ω′ conditional on A and Ω. Note that on

the left-hand side of the Bellman equation, and in the term representing current profits, P refers to a

given firm i’s price Pit at the end of t, when transactions occur. In the expectation on the right, P

represents the price P̃i,t+1 at the beginning of t+ 1, which may (probability λ) or may not (1− λ) be

adjusted prior to time t+ 1 transactions to a new value P ′.

The right-hand side of the Bellman equation can be simplified by using the notation from (9), and

the rearrangement (1− λ)V + λmaxV = V + λ(maxV − V ):

V (P,A,Ω) = U(P,A,Ω) + βE

{
P (Ω)C(Ω′)−γ

P (Ω′)C(Ω)−γ
[V (P,A′,Ω′) +G(P,A′,Ω′)]

∣∣∣∣A,Ω} , (12)

where

G(P,A′,Ω′) ≡ λ

(
D(P,A′,Ω′)

W (Ω′)

)
D(P,A′,Ω′). (13)

The terms inside the expectation in the Bellman equation represent the value V of continuing without

adjustment, plus the flow of expected gains G due to adjustment. Since the firm sets the optimal price
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whenever it adjusts, the price process associated with (12) is

Pit =

 P ∗(Ait,Ωt) ≡ arg maxP V (P,Ait,Ωt) with probability λ
(
D(P̃it,Ait,Ωt)

W (Ωt)

)
P̃it ≡ Pi,t−1 with probability 1− λ

(
D(P̃it,Ait,Ωt)

W (Ωt)

) . (14)

Equation (14) is written with time subscripts for additional clarity.

2.2.1. Alternative sticky price frameworks

Our assumptions require the function λ to be weakly increasing and to lie between zero and one.

The paper focuses primarily on the following functional form:

λ (L) ≡ λ

λ+ (1− λ)
(
α
L

)ξ (15)

with α and ξ positive, and λ ∈ [0, 1]. This function equals λ when L = α, and is concave for ξ ≤ 1 and

S-shaped for ξ > 1 (see the second panel of Fig. 1). The parameter ξ effectively controls the degree of

state dependence. In the limit ξ = 0, (15) nests Calvo (1983), with λ (L) = λ, making the adjustment

hazard literally independent of the relevant state variable, which is L. At the opposite extreme, as

ξ →∞, λ (L) becomes the indicator 1 {L ≥ α}, which equals 1 whenever L ≥ α and is zero otherwise.

This implies very strong state dependence, in the sense that the adjustment probability jumps from 0

to 1 when the state L passes the threshold level α. For all intermediate values 0 < ξ <∞, the hazard

increases smoothly with the state L. In this sense, choosing ξ to match microdata means finding the

degree of state dependence most consistent with firms’ observed pricing behavior.

The combination of Bellman equation (12) with (13) is based on a near-rational interpretation of our

setup; for 0 < ξ <∞ this version of the model will be called “SSDP”, for “smoothly state-dependent

pricing”. However, as Table 1 shows, (12) nests several other models under appropriate choices of the

gains function G and the hazard function λ. Subtracting a flow of menu costs E(κ|κ < L) ≡
∫ L

0
κλ(dκ)

out of the gains G converts the SSDP model into the SMC model. The FMC model sets the adjustment

probability to a step function, subtracting a constant menu cost α out of G; it is the limit of the SMC

model as ξ → ∞. The Calvo model is derived both from SSDP and from SMC as ξ → 0.4 An

alternative hazard function derived from Woodford (2009) is also considered.

4In the limit of SMC as ξ → 0, the menu cost is zero with probability λ and infinite with probability 1− λ, which is
when firms do not adjust. The flow of menu costs paid is therefore zero.
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2.3. Monetary policy and aggregate consistency

Two specifications for monetary policy are compared: a money growth rule and a Taylor rule. In

both cases the systematic component of monetary policy is perturbed by an AR(1) process z,

zt = φzzt−1 + εzt , (16)

where 0 ≤ φz < 1 and εzt ∼ i.i.d.N(0, σ2
z). Under the money growth rule, which is analyzed first to

build intuition and for comparison with previous studies, z affects money supply growth:

Mt/Mt−1 ≡ µt = µ∗ exp(zt). (17)

Alternatively, under a Taylor interest rate rule, which is a better approximation to actual monetary

policy, the nominal interest rate follows

Rt

R∗
= exp(−zt)

((
Pt/Pt−1

Π∗

)φπ (Ct
C∗

)φc)1−φR (
Rt−1

R∗

)φR
, (18)

where φc ≥ 0, φπ > 1, and 0 < φR < 1, so that when inflation Pt/Pt−1 exceeds its target Π∗ or

consumption Ct exceeds its target C∗, Rt tends to rise above its target R∗ ≡ Π∗/β. For comparability

between the two monetary regimes, the inflation target is set to Π∗ ≡ µ∗, and the rules are specified

so that in both cases, a positive z represents an expansive shock.

Seigniorage revenues are paid to the household as a lump-sum transfer, and the government bud-

get is balanced each period. Therefore total nominal transfers to the household, including dividend

payments, are

Tt = Mt −Mt−1 +

∫ 1

0

Uitdi. (19)

Bond market clearing is simply Bt = 0. When supply equals demand for each good i, total labor

supply and demand satisfy

Nt =

∫ 1

0

Cit
Ait

di = P ε
tCt

∫ 1

0

P−εit A
−1
it di ≡ ∆p

tCt. (20)

Equation (20) also defines a measure of price dispersion, ∆p
t ≡ P ε

t

∫ 1

0
P−εit A

−1
it di, weighted to allow for

heterogeneous productivity. As in Yun (2005), an increase in ∆p
t decreases the goods produced per

unit of labor, effectively acting like a negative aggregate productivity factor.
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At this point, all equilibrium conditions have been spelled out, so an appropriate aggregate state

variable Ωt can be identified. At time t, the lagged distribution of transaction prices Φt−1(P,A) is

predetermined. Knowing Φt−1, the lagged price level can be substituted out of the Taylor rule, using

Pt−1 =

[∫∫
P 1−εΦt−1(dP, dA)

]1/(1−ε)

. It can thus be seen that Ωt ≡ (zt, Rt−1,Φt−1) suffices to define

the aggregate state. Given Ωt, equations (4), (5), (6), (8), (9), (10), (12), (13), (14), (16), (18), and

(20) together give enough conditions to determine the distributions Φ̃t and Φt, the price level Pt, the

functions U(P,A,Ωt), V (P,A,Ωt), D(P,A,Ωt), and G(P,A,Ωt), and the variables Rt, Ct, Nt, Wt, and

zt+1. Thus they determine the next state, Ωt+1 ≡ (zt+1, Rt,Φt).

Under a money growth rule, the time t state can instead be defined as Ωt ≡ (zt,Mt−1,Φt−1).

Substituting (7) for (6) and (17) for (18), knowing Ωt ≡ (zt,Mt−1,Φt−1) suffices to determine Φ̃t, Φt,

U(P,A,Ωt), V (P,A,Ωt), D(P,A,Ωt), and G(P,A,Ωt), as well as Pt, Ct, Nt, Wt, zt+1, and Mt. Thus

the next state, Ωt+1 ≡ (zt+1,Mt,Φt), can be calculated.

3. Computation

The fact that this model’s state variable includes the distribution Φ, an infinite-dimensional object,

makes computing equilibrium a challenge. The popularity of the Calvo model reflects its implication

that general equilibrium can be solved up to a first-order approximation by keeping track of the

average price only. Unfortunately, this result typically fails to hold if pricing is state-dependent;

instead, computation requires tracking the whole distribution Φ.

Equilibrium will be computed here following the two-step algorithm of Reiter (2009), which is

intended for contexts, like this model, with relatively large idiosyncratic shocks and also relatively

small aggregate shocks. In the first step, the aggregate steady state of the model is computed on a

finite grid, using backwards induction.5 Second, the stochastic aggregate dynamics are computed by

linearization, grid point by grid point. In other words, the Bellman equation is treated as a large

system of expectational difference equations, instead of as a functional equation.

5Actually, Reiter’s algorithm permits calculation of the aggregate steady state using a variety of finite-element
methods; we choose backwards induction on a grid since it is a familiar and transparent procedure.
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3.1. Detrending

Calculating a steady state requires detrending to make the economy stationary. Here it suffices

to scale all nominal variables by the aggregate price level, defining the real wage and money supply

wt = Wt/Pt and mt ≡ Mt/Pt, and the real prices at the beginning and end of t, p̃it ≡ P̃it/Pt and

pit ≡ Pit/Pt. The beginning-of-t and end-of-t price distributions will be written as Ψ̃t(p̃it, Ait) and

Ψt(pit, Ait), respectively. At the end of t, when goods are sold, the real price level is one by definition:

1 =

{∫∫
p1−εΨt(dp, dA)

}1/(1−ε)

. (21)

For this detrending to make sense, the nominal price level Pt must be irrelevant for real quantities,

which must instead be functions of a real state variable Ξt that is independent of nominal prices and the

nominal money supply. A time subscript on any aggregate variable must now denote dependence on

the real state, implying for example wt = w(Ξt) =W (Ωt)/P (Ωt) and Ct = C(Ξt) = C(Ωt). While the

price level will cancel out, inflation Πt ≡ Pt/Pt−1 will still appear in the model. It must be determined

by real variables, satisfying Πt = Π(Ξt−1,Ξt) = P (Ωt)/P (Ωt−1).

A similar property applies to the value function and profits, which must be homogeneous of degree

one in prices. Thus, define real profits u and real value v as follows:

u (p,A,Ξ) = u (P/P (Ω), A,Ξ) ≡ P (Ω)−1U(P,A,Ω), (22)

v (p,A,Ξ) = v (P/P (Ω), A,Ξ) ≡ P (Ω)−1V (P,A,Ω). (23)

To verify homogeneity, divide through the nominal Bellman equation (12) by P (Ω) to obtain

v(p,A,Ξ) = u(p,A,Ξ) + βE

{
C(Ξ′)−γ

C(Ξ)−γ

[
v

(
p

Π(Ξ,Ξ′)
, A′,Ξ′

)
+ g

(
p

Π(Ξ,Ξ′)
, A′,Ξ′

)]∣∣∣∣A,Ξ} , (24)

using the definitions

g (p̃, A,Ξ) ≡ λ

(
d (p̃, A,Ξ)

w(Ξ)

)
d (p̃, A,Ξ), (25)

d (p̃, A,Ξ) ≡ max
p
v(p,A,Ξ)− v(p̃, A,Ξ), (26)
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which satisfy g (p̃, A,Ξ) = G(P (Ω)p̃, A,Ω)/P (Ω) and d (p̃, A,Ξ) = D(P (Ω)p̃, A,Ω)/P (Ω).6 This de-

trending implies that when a firm’s nominal price remains unadjusted at time t, its real price is deflated

by factor Πt. Therefore the real price process is

pit =


p∗(Ait,Ξt) ≡ arg maxp v(p,Ait,Ξt) with probability λ

(
d(Π−1

t pi,t−1,Ait,Ξt)
w(Ξt)

)
Π−1
t pi,t−1 with probability 1− λ

(
d(Π−1

t pi,t−1,Ait,Ξt)
w(Ξt)

) . (27)

To see that these definitions of real quantities suffice to detrend the model, define the real state as

Ξt ≡ (zt, Rt−1,Ψt−1). Knowing Ξt, in the case of a Taylor rule, equations (5), (6), (8), (16), (18), (20),

(21), (22), (24), (25), (26), and (27), with substitutions of real for nominal variables where necessary,

suffice to determine the distributions Ψ̃t and Ψt, inflation Πt, the functions u(p,A,Ξt), v(p,A,Ξt),

d(p,A,Ξt), and g(p,A,Ξt), and the variables Ct, wt, Nt, Rt, and zt+1. For a money growth rule, the

real state can be defined as Ξt ≡ (zt,mt−1,Ψt−1), and equation (18) is replaced by (7) and by

mt = µ∗ exp(zt)mt−1/Πt, (28)

which together determine Rt and mt. Thus next period’s state Ξt+1 can be calculated if Ξt is known.

3.2. Discretization

Price process (27) is defined over a continuum of possible values, but to solve the model numerically,

the idiosyncratic states must be restricted to a finite-dimensional support. Hence, the continuous

model will be approximated on a two-dimensional grid Γ ≡ Γp × Γa, where Γp ≡ {p1, p2, ...p#p} and

Γa ≡ {a1, a2, ...a#a} are logarithmically-spaced grids of possible values of of pit and Ait. Thus the

time-varying distributions will be treated as matrices Ψ̃t and Ψt of size #p × #a, in which the row

j, column k elements, called Ψ̃jk
t and Ψjk

t , represent the fraction of firms in state (pj, ak) before and

after price adjustments in period t, respectively. From here on, bold face is used to identify matrices

and superscripts are used to identify notation related to grids.

Similarly, the value function is written as a #p×#a matrix Vt of values vjkt ≡ v(pj, ak,Ξt) associated

with the prices and productivities
(
pj, ak

)
∈ Γ. The time subscript indicates the fact that the value

6In deriving (24) from (12), initially a term of the form C(Ω′)−γ

P (Ω′)C(Ω)−γ V (P,A′,Ω′) appears on the right-hand side; using

(23) this reduces to C(Ξ′)−γ

C(Ξ)−γ v
(

p
Π(Ξ′,Ξ) , A

′,Ξ′
)

. Reducing the G term in the same way yields (24).
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function shifts due to changes in the aggregate state Ξt. When necessary, the value is evaluated using

splines at points p /∈ Γp off the price grid. In particular, the policy function

p∗(A,Ξt) ≡ arg max
p∈R

v(p,A,Ξt) (29)

is selected from the reals (p ∈ R) instead of being chosen from the grid (p ∈ Γp), because the solution

method will require policies to vary continuously with their arguments. The policies at the productivity

grid points ak ∈ Γa are written as a row vector p∗t ≡
{
p∗1t ...p

∗#a

t

}
≡
{
p∗(a1,Ξt)...p

∗(a#a
,Ξt)

}
. Various

other equilibrium functions are also treated as #p × #a matrices. The adjustment values Dt, the

probabilities Λt, and the expected gains Gt have (j, k) elements given by7

djkt ≡ max
p∈R

v(p, ak,Ξt)− vjkt , (30)

λjkt ≡ λ
(
djkt /wt

)
, (31)

gjkt ≡ λjkt d
jk
t . (32)

Given this discrete representation, the distributional dynamics can be written in a more explicit

way. First, to keep productivity A on the grid Γa, it is assumed to follow a Markov chain defined by

a matrix S of size #a ×#a. The row m, column k element of S represents the probability

Smk = prob(Ait = am|Ai,t−1 = ak). (33)

Also, beginning-of-t real prices must be adjusted for inflation. Ignoring grids, the time t−1 price pi,t−1

would be deflated to p̃it ≡ pi,t−1/Πt at the beginning of t. Prices are forced to remain on the grid by

a #p ×#p Markov matrix Rt in which the row m, column l element represents

Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl,Πt = Π(Ξt,Ξt−1)). (34)

When the deflated price pi,t−1/Πt falls between two grid points, Rt rounds it up or down stochastically

without changing its mean. Also, if pi,t−1/Πt drifts up or down past the largest or smallest grid points,

7The max in (30), like the arg max in (29), ignores the grid Γp so that djkt varies continuously in response to any
change in the value function.
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then Rt rounds it down or up to keep prices on the grid. Thus the transition probabilities are

Rml
t =



1 if pl/Πt ≤ p1 = pm

pl/Πt−pm−1

pm−pm−1 if p1 < pm = min{p ∈ Γp : p ≥ pl/Πt} < p#p

pm+1−pl/Πt
pm+1−pm if p1 ≤ pm = max{p ∈ Γp : p < pl/Πt} < p#p

1 if pl/Πt > p#p
= pm

0 otherwise

. (35)

Combining the adjustments of prices and productivities, the beginning-of-t distribution Ψ̃t can be

calculated from the lagged distribution Ψt−1 as follows:

Ψ̃t = Rt ∗Ψt−1 ∗ S′, (36)

where the operator ∗ represents matrix multiplication. Two facts explain the simplicity of this equation.

First, the exogenous shocks to Ait are independent of the inflation adjustment linking p̃it with pi,t−1.

Second, productivity is arranged from left to right in the matrix Ψt−1, so productivity transitions

are represented by right multiplication, while prices are arranged vertically, so price transitions are

represented by left multiplication.

Next, a firm with beginning-of-t state (p̃it, Ait) = (pj, ak) ∈ Γ will adjust its price to pit = p∗kt with

probability λjkt , and otherwise leave it unchanged. If adjustment occurs, prices are kept on the grid

by rounding p∗kt up or down stochastically to the nearest grid points, without changing the mean. To

be precise, let Γp be wide enough so that p1 < p∗kt < p#p
for all k ∈ {1, 2, ...#a}. For each k, define

lt(k) so that plt(k) = min{p ∈ Γp : p ≥ p∗kt }. Then the following #p×#a matrix governs the rounding:

Pt ≡


plt(k)−p∗kt

plt(k)−plt(k)−1 in column k, row lt(k)− 1

p∗kt −plt(k)−1

plt(k)−plt(k)−1 in column k, row lt(k)

0 elsewhere

. (37)

Now let Epp and Epa be matrices of ones of size #p×#p and #p×#a, respectively, and (as in MATLAB)

let the operator .∗ represent element-by-element multiplication. Then the end-of-t distribution Ψt can

be calculated from Ψ̃t as follows:

Ψt = (Epa −Λt) . ∗ Ψ̃t + Pt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)). (38)
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The same transition matrices show up when the Bellman equation is written in matrix form. Let

Ut be the #p ×#a matrix of current profits, with elements

ujkt = u(pj, ak,Ξt) =
(
pj − wt

ak

)
Ctp

−ε
j (39)

for
(
pj, ak

)
∈ Γ. Then the Bellman equation is simply

Vt = Ut + βEt

{
C−γt+1

C−γt
R′t+1 ∗ (Vt+1 + Gt+1) ∗ S

}
, (40)

where Gt+1 = Λt+1 . ∗ Dt+1 was defined by (32). Several comments may help clarify this Bellman

equation. Note that the expectation Et refers only to the effects of the time t + 1 aggregate shock

zt+1, because multiplying by R′t+1 and S fully describes the expectation over the idiosyncratic state

(pj, ak) ∈ Γ. S has no time subscript, since the Markov productivity process is not subject to aggregate

shocks, whereas the inflation adjustment represented by R′t+1 varies with the policy shock. Also, while

the distributional dynamics iterate forward in time, with transitions governed by R and S′, the Bellman

equation iterates backwards, so its transitions are described by R′ and S.

3.3. Computation: steady state

In an aggregate steady state, policy shocks z are zero, and transaction prices converge to an ergodic

distribution Ψ, so the aggregate state of the economy is constant: Ξt = (zt, Rt−1,Ψt−1) = (0, R,Ψ) ≡ Ξ

under the Taylor rule, or Ξt = (zt,mt−1,Ψt−1) = (0,m,Ψ) ≡ Ξ under a money growth rule. The steady

state of any aggregate equilibrium object is indicated by dropping the subscript t.

The steady-state calculation nests the firm’s backwards induction problem inside a loop that de-

termines the steady-state real wage w. Note first that Π = µ∗ = βR in steady state; hence the matrix

R is known. Then, given w, (5) determines C, so all elements ujk of U can be calculated from (39).

Then, backwards induction on the grid Γ can solve the Bellman equation

V = U + βR′ ∗ (V + G) ∗ S. (41)

Solving (41) involves finding the matrices V, D, Λ, and G, so the matrix P can also be calculated

from (37). Then (36) and (38) can be used to find the distributions Ψ̃ and Ψ, and finally (4) serves
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to check the guessed value of w. In discretized notation, equation (4) becomes

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t

(
pj
)1−ε

. (42)

If (42) holds at the ergodic distribution Ψt = Ψ, then a steady-state equilibrium has been found.

3.4. Computation: dynamics

Bellman equation (40) and distribution dynamics (36)-(38) are usually viewed as functional equa-

tions. However, under the discretization of Sec. 3.2, they can also be seen as two long lists of difference

equations describing the values and probabilities at all grid points. Thus, Reiter (2009) proposes lin-

earizing these equations around their steady state, calculated in Sec. 3.3. To do so, it first helps to

reduce the number of variables by eliminating simple intratemporal relationships. Under a money

growth rule, the model can be described by the following vector of endogenous variables:

−→
X t ≡

(
vec (Vt)

′ , Ct, Πt, vec (Ψt−1)′ , mt−1

)′
(43)

Vector
−→
X t, together with the shock process zt, consists of 2#p#a + 4 variables determined by the

following system of 2#p#a + 4 equations: (40), (7), (42), (38), (28), and (16). Under a Taylor rule,

mt−1 is replaced by Rt−1, and (7) and (28) are replaced by (6) and (18). Thus the difference equations

governing dynamic equilibrium constitute a first-order system of the form

EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0, (44)

where Et is an expectation conditional on zt and all previous shocks.8 Next, system F can be linearized

numerically to construct the Jacobian matrices A ≡ D−→
X t+1
F , B ≡ D−→

X t
F , C ≡ Dzt+1F , and D ≡ DztF .

This yields the following first-order linear expectational difference equation system:

EtA∆
−→
X t+1 + B∆

−→
X t + EtCzt+1 +Dzt = 0, (45)

where ∆ represents a deviation from steady state. This system has the form considered by Klein (2000),

so it will be solved using his QZ decomposition method, though other linear rational expectations

solvers would be applicable as well.

8Given (
−→
X t+1,

−→
X t, zt+1, zt), all other variables appearing in (40), (7), (42), (38), (28), and (16) can be substituted

out using intratemporal equations. Given Πt and Πt+1, Rt and Rt+1 are known; thus Ψ̃t = Rt ∗ Ψt−1 ∗ S′ can be
calculated too. The wage is given by (5), so Ut can be constructed. Finally, given Vt and Vt+1 one can construct Pt,
Dt, and Dt+1, and thus Λt and Gt+1. Therefore the arguments of F suffice to evaluate the system (44).
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The virtue of Reiter’s method is that it combines linearity and nonlinearity in a way appropriate for

the context of price adjustment, where idiosyncratic shocks are larger and more economically important

to individual firms than aggregate shocks. To deal with large idiosyncratic shocks, it treats functions

of idiosyncratic states nonlinearly (calculating them on a grid). But in linearizing each equation at

each grid point, it recognizes that aggregate changes (policy shocks z, or shifts of the distribution Ψ)

are unlikely to affect individual value functions in a strongly nonlinear way. On the other hand, it

makes no assumption of approximate aggregation like that of Krusell and Smith (1998).

4. Results

4.1. Parameterization

Our calibration seeks price adjustment and productivity processes consistent with microdata on

price changes, like those in Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), and Midrigan

(2011). Since utility parameters are not the main focus, these are set to the values used by GL07. The

discount factor is set to β = 1.04−1 per year; the coefficient of relative risk aversion of consumption

is set at γ = 2. The coefficients on labor disutility and the utility of money are χ = 6 and ν = 1,

respectively, and the elasticity of substitution in the consumption aggregator is ε = 7.

The main price data that will serve as an empirical benchmark are the monthly AC Nielsen data

reported by Midrigan (2011).9 Therefore, the model will be simulated at monthly frequency, with a

zero steady state money growth rate, consistent with the zero average price change in that dataset.

Midrigan reports the data after removing price changes attributable to temporary “sales”, so our

simulation results should be interpreted as a model of “regular” price changes unrelated to sales.

Conditional on these specification choices, the adjustment parameters (λ, α, and ξ) and productivity

parameters (ρ and σ2
ε) are chosen to minimize a distance criterion between the data and the model’s

steady state.10 The criterion sums two terms, scaled for comparability: the first is the absolute

9However, we fit the model to Nakamura and Steinsson’s (2008) measure of the median frequency of price adjustments.
This is lower, but presumably more robust, than the mean adjustment frequency reported by Midrigan.

10The productivity process (8) is approximated on the grid Γa using Tauchen’s method; we thank Elmar Mertens for
making his software available. The productivity grid has 25 points, and the price grid Γp has 31 points. Both grids are
logarithmically spaced; steps in Γp represent 4% changes. Results are not sensitive to the use of this coarse grid, since
the average absolute price adjustment is much larger (around 10%).
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difference between the adjustment frequencies in the data and the simulation, while the second is

the Euclidean distance between the frequency vectors associated with the histograms of nonzero price

adjustments in the data and the simulation.

Table 2 summarizes the steady-state behavior of the model under the estimated parameters, to-

gether with evidence from four empirical studies. The baseline specification, in which λ, α, and ξ are

all estimated, is labelled SSDP. The table also reports Calvo (λ estimated, ξ ≡ 0, and α undefined) and

FMC specifications (α estimated, ξ ≡ ∞, and λ undefined), as well as a version based on Woodford’s

(2009) adjustment function and an SMC specification. All versions of the model match the target

adjustment frequency of 10% per month. But the extreme cases of the model (Calvo and FMC) are

less successful in fitting the size distribution of price adjustments than are the intermediate cases; the

Calvo model understates the average size and standard deviation of price adjustments, whereas the

FMC model overstates both.

The trouble with the FMC model, as Fig. 1 shows, is that it only produces price changes lying just

outside the (S,s) bands, whereas the adjustments observed in the data are very diverse.11 Thus the

FMC model that best fits the data produces adjustments that are too large on average; no adjustments

in the model are less than 5%, whereas one quarter of all adjustments are below the 5% threshold

in the AC Nielsen data. The Calvo model errs in the opposite direction, with too many small price

adjustments, though its fit statistics are better than those of the FMC model. In contrast, all three

specifications with a smoothly increasing adjustment hazard (SSDP, SMC, and Woodford) match the

data well, since they permit large and small price adjustments to coexist. In fact, there is so little

difference between these models that only SSDP will be discussed from here on.12

Our estimates imply fairly strong frictions impeding price adjustment. The estimated function λ

(see Fig. 1, right panel) rises quickly at zero but is thereafter very flat. It equals 10% per month at a

loss of L = 0.0235 (6% of monthly labor input) and only reaches 30% per month at the highest loss

that occurs with nonzero probability in the steady state equilibrium, which is L = 7.91, roughly 21

11Klenow and Kryvtsov (2008) document that large and small price changes coexist even within narrow product
categories, and that the FMC model performs poorly even when menu costs are allowed to differ across sectors.

12Our companion paper, Costain and Nakov (2011), shows that the SSDP model performs somewhat better than
Woodford’s specification at high (e.g. 70% annually) inflation rates. But at low inflation rates, the responses to monetary
shocks (available from the authors) are indistinguishable across the SSDP, SMC, and Woodford specifications.
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months’ worth of labor input. Of course, the λ function is flat in the Calvo model by construction.

Our estimate of Woodford’s specification implies λ ≈ 1 at the most extreme losses that occur in

equilibrium, but it is also very flat over the range of losses that occur frequently. For example, the

cross-sectional standard deviation of λ is roughly 4% in SSDP and 3% in the Woodford setup, whereas

it is 30% in the FMC model.

Thus, in the models considered, firms do not adjust instantly even when faced with very large

losses. Nonetheless, typical losses in equilibrium are more moderate, since firms usually adjust before

reaching extreme situations. Across specifications, the decrease in average profits due to price stickiness

(see Table 2) ranges from 1.5% of average revenues in the FMC case to 5.3% of average revenues in

the Woodford specification. (The differences look larger when expressed as a fraction of average

profits, since profits are a small fraction of revenues.) Clearly, these estimated adjustment frictions are

nontrivial; whether they seem unrealistically large may depend on whether they are conceived literally

as “menu costs” or as costs of managerial decision making, along the lines of Zbaracki et al. (2004).

4.2. Effects of monetary policy shocks

Since all specifications are calibrated to the same observed adjustment frequency, the fact that

only large, valuable price changes occur in the FMC model, whereas some changes in the SSDP and

Calvo frameworks are trivial, has important implications for monetary transmission. Fig. 2 compares

responses to several types of monetary shocks across these three adjustment specifications. All sim-

ulations assume the same utility parameters, and zero baseline inflation, and are calculated starting

from the steady-state distribution associated with the corresponding specification. The first two rows

show impulse responses to one percentage point money growth shocks, comparing the i.i.d. case with

that of monthly autocorrelation φz = 0.8. The third row shows the responses to an i.i.d. interest rate

shock under a Taylor rule.

In all three models, an increase in money growth stimulates consumption. The fact that some prices

fail to adjust immediately means expected inflation rises, decreasing the ex ante real interest rate; it

also means households’ real money balances increase; both of these effects raise consumption demand.

However, as GL07 emphasized, the average price level adjusts rapidly in the FMC specification (lines



Distributional dynamics under smoothly state-dependent pricing 21

with circles), with a large, short-lived spike in inflation. This makes changes in real variables small and

transitory, approaching the monetary neutrality associated with full price flexibility. At the opposite

extreme, prices adjust gradually in the Calvo specification (lines with squares), leading to a large,

persistent increase in output. The response of the SSDP model (lines with dots) mostly lies between

the other two, but is generally closer to that of the Calvo model.

Comparing the first and second rows of Fig. 2 shows that while the shape of the inflation and output

responses differs substantially across models, it is qualitatively similar under iid and autocorrelated

money growth processes. In the FMC model inflation spikes immediately regardless of the persistence

of money growth. However, with autocorrelated money growth the initial spike exceeds 1% as firms

anticipate that money growth will remain positive for some time. The rise in inflation is smaller but

more persistent in the SSDP and Calvo cases. Note that the persistence of inflation does not differ

noticeably depending on the autocorrelation of money growth, but instead appears to be determined

primarily by the degree of state dependence. Thus the big difference between the impulse responses

in the first and second rows is one of size, not of shape.

The third row of Fig. 2 shows responses under a Taylor rule, assuming that the underlying shock

z is i.i.d., and that the rule has inflation and output coefficients φπ = 2 and φc = 0.5, and smoothing

coefficient φR = 0.9. While money growth shocks are small, incremental changes to the level of the

nominal money supply, Taylor rule shocks involve large fluctuations in the level of nominal money.

Nonetheless, the two types of monetary-policy shocks have similar real effects, and moreover, the

finding that a micro-calibrated model of state-dependent pricing implies substantial monetary non-

neutrality is strengthened in several ways by considering a Taylor rule. First, under the Taylor rule,

the SSDP and Calvo impulse responses of inflation and consumption are even closer together than they

were under the money growth rule. In fact, for consumption, both SSDP and FMC imply virtually

the same effect on impact as that occurring in the Calvo model, though the effect is less persistent in

the FMC case.

Recall, though, that the Taylor rule responses in Fig. 2 suppose an initial drop in the nominal

interest rate of 25 basis points. Since the interest rate is endogenous, the required underlying shock εz

varies across models, and it is particularly large in the FMC case. Therefore, it is useful to consider
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additional ways of comparing the degree of monetary nonneutrality across models. Thus, Table 3

compares monetary policies that imply the same inflation variability, as in Sec. VI of GL07. The

calculation asks the following question: if monetary-policy shocks were the only source of observed

US inflation volatility, how much output variation would they cause? Under the SSDP specification,

money growth shocks alone would explain 65% of observed output fluctuations; the figure rises to

116% under the Calvo specification, and falls to 15% in the FMC case.13 Assuming a Taylor rule, the

differences across models are even stronger, and the monetary nonneutrality of the SSDP and Calvo

specifications is even greater. Taylor rule shocks alone would explain 110% of US output fluctuation

under the SSDP specification, rising to 306% in the Calvo case. The table also reports a “Phillips

curve” coefficient, calculated by regressing log output on inflation, instrumented by the exogenous

monetary policy shock. The conclusions are similar: the SSDP model implies large real effects of

monetary shocks, closer to the Calvo specification than to the FMC specification, and the differences

across models are larger under a Taylor rule than they are under a money growth rule.

Next, Fig. 3 plots the response of price dispersion, ∆p
t , defined in (20). In our model, one reason

prices vary is that firms face different productivities. But additional price dispersion, caused by failure

to adjust when necessary, implies inefficient variation in demand across goods that implies a decrease

in aggregate productivity: Ct = Nt/∆
p
t . In a representative agent model near a zero-inflation steady

state, ∆p
t is negligible because it is roughly proportional to the cross-sectional variance of prices,

a quantity of second order in the inflation rate.14 But cross-sectional price variance is not second

order when large idiosyncratic shocks are present, so the dispersion wedge ∆p
t may be quantitatively

important, especially since ε = 7 magnifies variations in the ratio Pit/Pt. The first row of Fig. 3

shows that for SSDP and Calvo, increased money growth throws firms’ prices further out of line

with fundamentals, increasing dispersion; raising consumption therefore requires a larger increase in

labor in these specifications. In contrast, the variation in ∆p
t is smaller in the FMC case, because

all firms with severe price misalignments do in fact adjust. Interestingly, since the Taylor rule leans

against inflationary shocks, there is much less variation in the price level for the SSDP and Calvo cases

13The table considers autocorrelated money growth shocks. The results for i.i.d. money growth are very similar, since,
as demonstrated in Figure 2, correlation mostly changes the scale of the impulse responses, rather than their shape.

14See for example Gaĺı (2008), p. 46 and Appendix 3.3.
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in our Taylor rule simulation than there is under autocorrelated money growth. Thus, in all three

specifications, a Taylor rule shock causes little variation in ∆p
t .

4.3. Inflation decompositions

Several decompositions can help illustrate the inflation dynamics implied by this model. To a first-

order approximation, inflation can be calculated as an average of log nominal price changes. Using

our grid-based notation, and starting from the beginning-of-period distribution Ψ̃t,

πt = log Πt =

#p∑
j=1

#a∑
k=1

xjkt λ
jk
t Ψ̃jk

t , (46)

where xjkt ≡ log
(
p∗(ak,Ξt)

pj

)
is the desired log price adjustment of a firm with price pj and productivity

ak. Klenow and Kryvtsov (2008) rewrite (46) as the product of the average log price adjustment xt

times the frequency of price adjustment λt:

πt = xtλt, xt ≡
∑

j,k x
jk
t λ

jk
t Ψ̃jk

t∑
j,k λ

jk
t Ψ̃jk

t

, λt ≡
∑
j,k

λjkt Ψ̃jk
t . (47)

Dropping higher-order terms, this implies the following inflation decomposition:

∆πt = λ∆xt + x∆λt, (48)

where variables without time subscripts represent steady states, and ∆ represents a deviation from

steady state.15 Klenow and Kryvtsov’s “intensive margin”, IKKt ≡ λ∆xt, is the part of inflation

attributable to changes in the average price adjustment; their “extensive margin”, EKKt ≡ x∆λt, is

the part due to changes in the frequency of adjustment.

Unfortunately, this decomposition does not reveal whether a rise in the average log price adjustment

xt is caused by a rise in all firms’ desired adjustments, or by a reallocation of adjustment opportunities

from firms desiring small or negative price changes to others wanting large price increases. That is,

IKKt mixes changes in desired adjustments (the only relevant changes in the Calvo model) with the

“selection effect” emphasized by GL07. To distinguish between these last two effects, inflation can

instead be broken into three terms: an intensive margin capturing changes in the average desired log

15Actually, Klenow and Kryvtsov (2008) propose a time series variance decomposition, whereas (47) is a decomposition
of each period’s inflation realization. But the logic of (47) is the same as that in their paper.
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price change, an extensive margin capturing changes in how many firms adjust, and a selection effect

capturing changes in who adjusts. These three effects are distinguished by rewriting (46) as

πt = x∗tλt +
∑
j,k

xjkt

(
λjkt − λt

)
Ψ̃jk
t , x∗t ≡

∑
j,k

xjkt Ψ̃jk
t . (49)

Note that in (49), x∗t is the average desired log price change, and not an average of the actual

log price changes of those firms that do adjust (as was the case in 47). Thus, (49) says that in-

flation equals the mean desired adjustment times the adjustment frequency plus a selection term∑
j,k x

jk
t

(
λjkt − λt

)
Ψ̃jk
t =

∑
j,k λ

jk
t

(
xjkt − x∗t

)
Ψ̃jk
t that can be nonzero if some changes xjkt are more

or less likely than the mean adjustment probability λt, or (equivalently) if firms with different proba-

bilities of adjustment λjkt tend to prefer adjustments that differ from the mean desired change x∗t .

Equation (49) leads to the following inflation decomposition:

∆πt = λ∆x∗t + x∗∆λt + ∆
∑
j,k

xjkt

(
λjkt − λt

)
Ψ̃jk
t . (50)

Our intensive margin effect, It ≡ λ∆x∗t , is the effect of changing all firms’ desired adjustment by the

same amount (or more generally, changing the mean preferred adjustment in a way that is uncorrelated

with the adjustment probability). It is the only nonzero term in the Calvo model, where λjkt = λ

for all j, k, t. Our extensive margin effect, Et ≡ x∗∆λt, is the effect of changing the fraction of

firms that adjust, assuming the new adjusters are selected randomly. Our selection effect, St ≡

∆
∑

j,k x
jk
t

(
λjkt − λt

)
Ψ̃jk
t , is the effect of redistributing adjustment opportunities across firms with

different desired changes xjkt , while fixing the overall fraction that adjust.

An alternative decomposition, proposed by Caballero and Engel (2007), also differences (46):

∆πt =
∑
j,k

∆xjkt λ
jkΨ̃jk +

∑
j,k

xjk∆λjkt Ψ̃jk +
∑
j,k

xjkλjk∆Ψ̃jk
t (51)

They further simplify this to

∆πt = λ∆µt +
∑
j,k

xjk∆λjkt Ψ̃jk (52)

under the assumption that all desired price adjustments change by ∆xjkt = ∆µt when money growth

increases by ∆µt, and by taking an ergodic average so that the last term drops out.16 Their first

16Our equation (50) is intended to decompose each period’s inflation realization, so it allows for shifts in the current

distribution Ψ̃jk
t . Caballero and Engel instead propose a decomposition (see their eq. 17) of the average impact of a
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term, ICEt ≡ ∆µtλ, is the same as our intensive margin It, if their assumption that all desired

price adjustments change by ∆µt is correct. But therefore, their “extensive margin” term ECEt ≡∑
j,k x

jk∆λjkt Ψ̃jk, confounds the question of how many firms adjust (our extensive margin Et) with the

question of who adjusts (our selection effect St), which is the mechanism stressed by GL07.

The importance of identifying the selection effect separately becomes clear in Fig. 4, which illus-

trates our decomposition of the inflation impulse response to monetary shocks. The three components

of inflation, It, Et, and St, are shown to the same scale for better comparison. The graphs demonstrate

(in contrast to Caballero and Engel’s claim) that the short, sharp rise in inflation observed in the FMC

specification results from the selection effect. This is true both under Taylor rule shocks, where infla-

tion spikes to 1.5% on impact, of which 1.25% is the selection component, and under (autocorrelated)

money growth shocks, where inflation spikes to 2.8%, with 2.25% due to selection. In contrast, infla-

tion in the Calvo model is caused by the intensive margin only; in SSDP there is a nontrivial selection

effect but it still only accounts for around one-third of the inflation response.

On the other hand, the extensive margin Et ≡ x∗∆λt plays a negligible role in the inflation response.

This makes sense, because the simulation assumes a steady state with zero inflation, so steady state

price adjustments are responses to idiosyncratic shocks only, and the average desired adjustment x∗

is very close to zero. Therefore Et is negligible even though the adjustment frequency λt itself does

vary.17 The extensive margin only becomes important when there is high trend inflation, so that the

average desired adjustment x∗ is large and positive.

As for the intensive margin, its initial effect after a money growth shock is similar across all

adjustment specifications, but it is more persistent in the Calvo and SSDP cases than in the FMC

case. The scale of the intensive margin depends on the autocorrelation of money growth: the mean

desired price change rises roughly one-for-one after an i.i.d. money growth shock (not shown), and

rises by roughly five percentage points when money growth has autocorrelation φz = 0.8 (first row

of Fig. 4). Thus, in the autocorrelated case, the intensive margin is initially I1 ≡ λ∆x∗1 ≈ 0.5%.

monetary shock. Therefore they evaluate their decomposition at the ergodic distribution (the time average over all
cross-sectional distributions, called fA(x) in their paper). Since this is a fixed starting point of their calculation, they
do not need to include a ∆fA(x) term.

17The fact that the steady state has exactly zero inflation is not crucial here; Et is quantitatively insignificant compared
to the other inflation components at any typical OECD inflation rate.
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In other words, firms wish to “frontload” price adjustment by approximately the same amount in all

three specifications; but many of these changes occur immediately in the FMC case (showing up as a

redistribution of adjustment opportunities, i.e., a selection effect), whereas they are realized gradually

in the other specifications. Under a Taylor rule, the intuition is similar, bearing in mind that Fig. 4 is

scaled to give an initial decline of 25 basis points in the nominal interest rate. This requires a larger

underlying shock z in the FMC specification than in the other cases; thus the effect on the intensive

margin is larger (but less persistent) for FMC than it is for Calvo and SSDP.

4.4. Comparing effects of sector-specific and aggregate shocks

Another issue of intererest in recent empirical literature is how prices respond to sector-specific

shocks. In particular, Boivin, Giannoni, and Mihov (2007) and Mackowiak, Moench, and Wiederholt

(2009, henceforth MMW09) present evidence that sector-specific prices respond much more quickly to

sector-specific shocks than they do to aggregate shocks. This is important, since it suggests that a

Calvo model with a single adjustment rate may be inappropriate. Indeed, it might be interpreted as

evidence for state dependence, and it suggests that the present model might be tested by assessing its

ability to reproduce these empirical observations.

To address these questions, this section investigates “sector-specific” shocks in our model, applying

the estimation routines of MMW09 to artificial panel data produced by simulating the SSDP calibration

under a Taylor rule. The data cover the price levels in 79 sectors over 245 months, as in the dataset of

MMW09. Of course, the model defined here does not actually have a sectoral structure. Nonetheless,

for a fixed integer #s > 0, one can simulate a panel of 79#s firms (each producing one specialized

product), and call each block of #s consecutive firms a “sector”. Productivity innovations remain i.i.d.

across firms, as they are elsewhere in the paper. However, since the number of firms per sector is finite,

sampling error will cause average productivity to differ across sectors at each time. An innovation to

average productivity in any artificially-defined sector can thus be regarded as a sector-specific shock.

Two questions are then relevant. First, can empirical findings like those of MMW09 be reproduced by

applying their methods to the model-generated data? Second, do their estimation methods correctly

identify the effects of sector-specific shocks? The answers are yes and no, respectively.
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The MMW09 statistical framework breaks inflation into aggregate and sector-specific components:

πn,t = µn + An(L)ut +Bn(L)vn,t (53)

where πn,t is the inflation rate in sector n at time t, µn is a sector-specific constant, An(L) and

Bn(L) are sector-specific lag polynomials, ut is an aggregate shock, and vn,t is a sector-specific shock.

Inflation πn,t and the shocks ut and vn,t are all scaled to have unit variance. Fig. 5 shows estimated

impulse responses of sector-specific price levels to vn,t (left column) and ut (right column), identified

by applying the Bayesian estimation programs of MMW09 to sectoral panel simulations from the

SSDP model (one- and two-standard-error bands are shown too). All the impulse responses in the

left column are consistent with the main finding of MMW09 (see Fig. 1 of their paper): the identified

sector-specific shocks cause an immediate, permanent rise in prices, with little change thereafter. In

other words, the inflation associated with sector-specific shocks is essentially white noise. In contrast,

the right column shows that the reaction to aggregate shocks is more gradual.

MMW09 also find that the impact of an sectoral shock on sectoral inflation is almost one-for-one,

and that sectoral shocks account for around 90% of sectoral inflation variance. Fig. 5 shows that if

simulated sectors are small (8 or 64 equally-weighted products), then the impact of a sectoral shock

is indeed almost one-for-one; moreover, in these cases sectoral shocks explain 80% to 90% of sectoral

inflation (see Fig. 6). However, if sectors consist of 512 equally-weighted products, then a one-standard

deviation sectoral shock creates only 0.7 standard deviations of inflation, and sectoral shocks explain

less than half of sectoral inflation variance. This is a consequence of the law of large numbers: with

more firms per sector, sector-specific inflation stays closer to its conditional expectation, so aggregate

shocks must explain a larger part of sectoral inflation (see the right-hand column of Fig. 5). Typical

observations of sectoral inflation in MMW09’s CPI data involve several hundred individual price quotes,

so sectors with 8 or 64 products are unrealistically small.18 But on the other hand, CPI weights vary

greatly across products in each sector (Leaver and Folk, 2004). Therefore the fourth row of the figure

reports a simulation with 512 products per sector, in which the CPI weights on the products are

18The BLS collects approximately 80000 prices each month to calculate the CPI; roughly 70% of these prices correspond
to the 79 sectors included in the MMW09 estimates. So the typical observation of sectoral inflation averages several
hundred individual prices. We thank an anonymous referee for providing these details.
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distributed according to Zipf’s law.19 This increases the importance of the highest-weighted goods, so

512 products with heterogeneous weights act like a much smaller number of equally-weighted products,

with a contribution of sectoral shocks to sectoral inflation variance exceeding 85% (see Fig. 6.)

Thus, running the estimation programs of MMW09 on simulated data from our model with 512

firms of heterogeneous size largely reproduces their empirical findings.20 However, this is rather puz-

zling, because the estimation results are inconsistent with the known properties of the simulated model.

In the model, prices only adjust once in ten months on average, and the degree of state-dependence

is low, so the true response of prices to any idiosyncratic or aggregate shock must be fairly slow.

Moreover, all sector-specific behavior in the model is mean-reverting, whereas the estimates in Fig. 5

show a permanent effect of a sector-specific shock on prices. To demonstrate these facts numerically,

we consider the sector-specific shock ε̄an,t, defined as the weighted average of firm-specific productivity

shocks εai,t across firms in sector n. We assume inflation can be written as a moving average of these

sectoral shocks and the aggregate monetary shock εzt :

πn,t = µn + An(L)εzt +Bn(L)ε̄an,t + επn,t (54)

The notation is the same here as in (53). However, sector-specific inflation will not generally equal

its predicted value conditional on the underlying shocks, so this specification must allow for a sector-

specific inflation residual επn,t. In contrast, (53) attributes any inflation unexplained by the aggregate

shock to the sector-specific shock, by construction.

Fig. 7 reports the responses to the sector-specific shock ε̄an,t (left column) and the aggregate shock

εzt , using the same simulated datasets analyzed in Fig. 5 (for accuracy, the length of each dataset is

extended to 5400 months.) Responses are estimated by OLS on a sector-by-sector basis; all sectoral

estimates are shown in the same graph. For all four datasets, responses to sector-specific and aggregate

shocks occur with a lag. The peak response to a sector-specific shock occurs five to ten months after

the time of the shock; the sectoral price level thereafter reverts to steady state. The time of reaction to

an aggregate shock is similar, but the effects are permanent. The only effect of increasing the number

19That is, the weight of the jth-largest firm in sector n in that sector’s CPI is proportional to j−1.
20Fig. 2 of MMW09 also reports “speed of response” statistics showing that sector-specific inflation reacts more quickly

sector-specific shocks. The same result obtains in our simulations; the graphs are available from the authors.
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of firms per sector is that aggregate shocks become more important for sectoral inflation, relative to

sectoral shocks, for the reasons discussed previously.

Why does the MMW09 estimation routine find effects of sectoral shocks so different from the

response to the true sectoral shock, shown in Fig. 7? The problem is that true shocks in microdata

are unknown to an econometrician, so Mackowiak et al. must identify sectoral shocks as residual

price increases not explained by aggregate shocks. In the SSDP model, individual prices typically

respond with a lag to true productivity shocks, so sectoral price levels do too. But in the MMW09

decomposition, the moment of the shock corresponds by assumption to the moment of the price increase,

so the response is estimated to be immediate. Mean reversion occurs by individual stochastic price

jumps in the model, whereas MMW09 assumes past shocks decay deterministically (component Bv in

their eq. 1). Hence their method interprets price movements back to the mean as a sequence of new

sectoral shocks that happen to go in the opposite direction (which is why the initial shock is interpreted

as permanent). Thus, results from their procedure (or others that identify sectoral shocks as inflation

residuals, e.g. Boivin et al., 2007) should be treated with caution. Our Monte Carlo exercise shows

that, at least in some cases, the procedure may exaggerate the speed of response to sectoral shocks,

suggesting stronger state dependence than the data actually warrant.

5. Conclusions

This paper has computed the impact of monetary policy shocks in a quantitative macroeconomic

model of state-dependent pricing. It has calibrated the model for consistency with microeconomic data

on firms’ pricing behavior, estimating how the probability of price adjustment depends on the value

of adjustment. Given the estimated adjustment function, the paper has characterized the dynamics of

the distribution of prices and productivities in general equilibrium.

The calibrated model implies that prices rise gradually after a monetary stimulus, causing a large,

persistent rise in consumption and labor. Looking across specifications, the main factor determining

how monetary shocks propagate through the economy is the degree of state dependence. That is,

raising the autocorrelation of money growth shocks just makes their effects proportionally larger,

without any notable change in the shape or persistence of the impulse responses. In contrast, decreasing
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state dependence from the extreme of fixed menu costs (FMC) to the opposite Calvo (1983) extreme

strongly damps the initial inflation spike caused by a money shock and increases its effect on real

variables. The parameterization most consistent with microdata (labelled “SSDP” throughout the

paper) is fairly close to the Calvo model in terms of its quantitative effects. The conclusions are

similar if the monetary authority follows a Taylor rule instead of a money growth rule, except that

the degree of monetary nonneutrality differs more across adjustment specifications; in particular, the

nonneutrality of the SSDP specification is increased.

This paper also decomposes the impulse response of inflation into an intensive margin effect relating

to the average desired price change, an extensive margin effect relating to the number of firms adjusting,

and a selection effect relating to the relative frequencies of small and large or negative and positive

adjustments. Under the preferred (SSDP) calibration, about two-thirds of the effect of a monetary

shock comes through the intensive margin, and most of the rest through the selection effect. The

extensive margin is negligible unless the economy starts from a high baseline inflation rate. Under

the FMC specification, a monetary shock instead causes a quick increase in inflation, driven by the

selection effect, which eliminates most of its effects on real variables.

Since the selection effect represents changes in the adjustment probability across firms, its strength

depends directly on the degree of state dependence. We say that state dependence is strong in the

FMC model because it makes λ a step function: at the threshold, a tiny increase in the value of

adjustment raises the adjustment probability from 0 to 1. Therefore the histogram of price changes

consists of two spikes: there are no small changes, and firms change their prices as soon as they pass

the adjustment thresholds. Hence, in steady state, those firms that might react to monetary policy are

all near the two thresholds; a monetary stimulus decreases λ from 1 to 0 for some firms desiring a price

decrease, while increasing λ from 0 to 1 for others preferring an increase, making the inflation response

quick and intense. That is, the same property that makes money nearly neutral in the FMC model

is the one which makes that model inconsistent with price microdata. A model in which adjustment

depends more smoothly on the value of adjusting fits microdata better and yields larger real effects of

monetary policy. Our two other smooth specifications (SMC, and Woodford’s hazard function) yield

results similar to the SSDP setup that was our main focus.
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Low state dependence might seem inconsistent, at first, with recent empirical claims that prices

react more quickly to sectoral shocks than to aggregate shocks. Indeed, our calibrated model implies

that prices react only gradually to sectoral shocks. However, this paper demonstrates that the empirical

methods of Mackowiak et al. (2009) may attribute an immediate, permanent impact to sectoral shocks

even in a dataset where the true sectoral shocks have a lagged, temporary effect. The problem is that

by treating any sector-specific change in inflation as a sectoral shock, they may confound sampling

error in the timing of price adjustments with fundamental shocks. Applying the MMW09 estimation

routines to simulated data from our model suggests that this problem may suffice to explain their

empirical results, calling into question the evidence for price flexibility at the sectoral level.
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6. Appendix: notation

Table N1: Exogenous parameters

Symbol Definition Where

Preferences of household

β Utility discount factor Sec. 2.1.

γ Coefficient of relative risk aversion Sec. 2.1.

χ Disutility of labor Sec. 2.1.

ν Coefficient on utility of money Sec. 2.1.

ε Elasticity of substitution across differentiated goods Sec. 2.1.

Technology of firms

ρ Persistence of firm-specific productivity Sec. 2.2.

σ2
a Variance of firm-specific productivity shock Sec. 2.2.

λ̄ Adjustment probability parameter Sec. 2.2.1.

α Adjustment probability parameter Sec. 2.2.1.

ξ Adjustment probability parameter Sec. 2.2.1.

Monetary policy

φz Persistence of monetary policy process Sec. 2.3.

σ2
z Variance of monetary policy shock Sec. 2.3.

µ∗ Money growth target Sec. 2.3.

Π∗ Inflation target in Taylor rule Sec. 2.3.

C∗ Output target in Taylor rule Sec. 2.3.

R∗ Interest rate target in Taylor rule Sec. 2.3.

φR Interest smoothing parameter in Taylor rule Sec. 2.3.

φπ Inflation weighting parameter in Taylor rule Sec. 2.3.

φc Output weighting parameter in Taylor rule Sec. 2.3.
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Table N2: Endogenous variables, nominal representation

Symbol Definition Where

Aggregate state

Ωt Nominal aggregate state Sec. 2.1. and 2.3.

Note: In the nominal representation, any aggregate variable indexed by t is determined,

in equilibrium, as a function of the time t state Ωt. Sometimes this functional relationship

will be written explicitly, e.g. Wt = W (Ωt).

Variables appearing in household’s problem

Ct Real household consumption Sec. 2.1.

Nt Labor supply Sec. 2.1.

Mt Nominal money supply Sec. 2.1.

Pt Nominal price level Sec. 2.1.

Wt Nominal wage Sec. 2.1.

Rt Nominal interest factor from t to t+ 1 Sec. 2.1.

Bt Nominal bonds held at t to pay off in t+ 1 Sec. 2.1.

Tt Nominal lump sum transfer to household at time t Sec. 2.1.

Cit Consumption of good produced by firm i Sec. 2.1.

Pit Price of good produced by firm i Sec. 2.1.

Other aggregate variables

Φ̃t Distribution of productivities and nominal prices at beginning of t Sec. 2.2.

Φt Distribution of productivities and nominal prices at end of t Sec. 2.2.

zt Stochastic process driving monetary policy Sec. 2.3.

εzt Monetary policy shock Sec. 2.3.

µt Monetary growth factor from t− 1 to t Sec. 2.3.

∆p
t Price dispersion statistic Sec. 2.3.
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Table N3: Endogenous variables, nominal representation – continued

Symbol Definition Where

Variables specific to firm i

Yit Real output of firm i at time t Sec. 2.2.

Ait Productivity of firm i at time t Sec. 2.2.

εait Productivity shock to firm i at time t Sec. 2.2.

Nit Labor input to firm i at time t Sec. 2.2.

Uit Nominal profits of firm i at time t Sec. 2.2.

P̃it Nominal price of output of firm i at beginning of t Sec. 2.2.

Note: prior to selling (at end of period t), price P̃it may or may not be adjusted.

The nominal price at which firm i sells in period t is called Pit

(hence Pit is the price that appears in the household’s problem.)

Functions describing firm behavior in equilibrium

U(P,A,Ω) Nominal profits of firm with productivity A that sells at price P in state Ω Sec. 2.2.

V (P,A,Ω) Nominal value of firm with productivity A that sells at price P in state Ω Sec. 2.2.

V ∗(A,Ω) Optimal value of firm with productivity A in state Ω Sec. 2.2.

P ∗(A,Ω) Optimal nominal price of firm with productivity A in state Ω Sec. 2.2.

D(P̃ , A,Ω) Nominal gain from adjusting, given beginning-of-period nominal price P̃ Sec. 2.2.

L(P̃ , A,Ω) Real gain from adjusting, given beginning-of-period nominal price P̃ Sec. 2.2.

λ(L) Probability of price adjustment, given real gain L from adjusting Sec. 2.2.

G(P̃ , A,Ω) Expected nominal gains from stochastic adjustment in current period Sec. 2.2.
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Table N4: Endogenous variables, real representation

Symbol Definition Where

Aggregate state

Ξt Real aggregate state Sec. 3.1.

Note: In the real representation, any aggregate variable indexed by t is determined,

in equilibrium, as a function of the time t state Ξt.

Aggregate variables

mt Real money supply Sec. 3.1.

wt Real wage Sec. 3.1.

Πt Inflation factor from t− 1 to t Sec. 3.1.

Ψ̃t Distribution of productivities and real prices at beginning of t Sec. 3.1.

Ψt Distribution of productivities and real prices at end of t Sec. 3.1.

Note: Ct, Nt, Rt, zt have the same meaning in the real and nominal representations.

Some variables defined in the nominal representation are not mentioned in the real representation.

Variables specific to firm i

p̃it Real price of firm i at beginning of period t Sec. 3.1.

pit Real price of firm i at end of period t Sec. 3.1.

Functions describing firm behavior in equilibrium

u(P,A,Ξ) Real profits of firm with productivity A that sells at real price p in state Ξ Sec. 3.1.

v(P,A,Ξ) Real value of firm with productivity A that sells at real price p in state Ξ Sec. 3.1.

p∗(A,Ξ) Optimal real price of firm with productivity A in state Ξ Sec. 3.1.

d(p̃, A,Ξ) Real gain from adjusting, given beginning-of-period real price p̃ Sec. 3.1.

g(p̃, A,Ξ) Expected real gains from stochastic adjustment in current period Sec. 3.1.

Note: Function λ has the same meaning in the real and nominal representations.
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Table N5: Discretized real representation

Symbol Definition Where

Discretization

Note: In the discretized real representation, superscripts indicate notation related to grids,

and bold face indicates matrices and vectors.

R The real numbers Sec. 3.2.

Γa Finite grid of possible values of productivity Sec. 3.2.

ak Element k of grid Γa Sec. 3.2.

#a Number of elements of grid Γa Sec. 3.2.

Γp Finite grid of possible values of real price Sec. 3.2.

pj Element j of grid Γp Sec. 3.2.

#p Number of elements of grid Γp Sec. 3.2.

Γ Two dimensional grid of prices and productivities, Γ = Γp × Γa Sec. 3.2.

Endogenous variables

Note: Firm-specific variables Ait, p̃it, and pit have the same meanings as in previous representations.

Aggregate variables Ξt, Ct, Nt, Πt, Rt, mt, and zt have the same meanings as in previous

representations. Steady states of aggregate variables are indicated by dropping time subscripts.

Matrix notation describing discretized problem of firm

Ut Profits matrix, with elements ujkt ≡ u(pj, ak,Ξt) Sec. 3.2.

Vt Value matrix, with elements vjkt ≡ v(pj, ak,Ξt) Sec. 3.2.

p∗t Policy vector, with elements p∗kt ≡ arg maxp∈Rv(p, ak,Ξt) Sec. 3.2.

Dt Adjustment gains matrix, with elements djkt ≡ maxp∈R v(p, ak,Ξt)− vjkt Sec. 3.2.

Λt Adjustment probabilities matrix, with elements λjkt ≡ λ(djkt /wt) Sec. 3.2.

Gt Matrix of expected gains from adjustment, with elements gjkt ≡ λjkt d
jk
t Sec. 3.2.

Note: Function λ has the same meaning it had in previous representations.

Steady states of these matrices are indicated by dropping time subscripts.
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Table N6: Discretized real representation, continued

Symbol Definition Where

Matrix notation describing distributional dynamics

Ψ̃t Beginning-of-period distribution matrix, with elements Ψ̃jk
t ≡ Ψ̃t(p

j, ak) Sec. 3.2.

Ψt End-of-period distribution matrix, with elements Ψjk
t ≡ Ψt(p

j, ak) Sec. 3.2.

Epp, Epa Matrices of ones, of sizes #p ×#p and #p ×#a, respectively Sec. 3.2.

S Markov productivity matrix, with elements Smk ≡ prob(Ait = am|Ai,t−1 = ak) Sec. 3.2.

Rt Markov matrix for inflation adjustment and stochastic rounding to grid Γp,

with elements Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl),

conditional on inflation Πt = Π(Ξt,Ξt−1) Sec. 3.2.

lt(k) Index of least grid element above preferred real price:

plt(k) ≡ min{p ∈ Γp : p ≥ p∗kt } Sec. 3.2.

Pt Matrix allocating newly adjusted prices to optimum value p∗kt ,

with mean-preserving stochastic rounding to grid Γp Sec. 3.2.

Note: Steady states of these objects are indicated by dropping time subscripts.

Linearization of dynamics

−→
X t Vector of variables in dynamic computation Sec. 3.4.

F Equation system linearized for dynamic computation Sec. 3.4.

A, B, C, D Jacobian matrices appearing in linearized equation system Sec. 3.4.

Note: Deviation between time t value and steady state is denoted by ∆.
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Table N7: Inflation decomposition and sectoral shocks

Symbol Definition Where

Inflation decomposition

πt Inflation rate: πt = log Πt Sec. 4.3.

λt Fraction of firms adjusting prices at time t Sec. 4.3.

xjkt Desired log price adjustment, given real price pj and productivity ak Sec. 4.3.

x∗t Average desired log price adjustment at time t (across all firms) Sec. 4.3.

xt Average log price adjustment at time t (across firms that adjust) Sec. 4.3.

It, Et, St Intensive, extensive, and selection margins of inflation deviation Sec. 4.3.

IKKt , EKKt Intensive and extensive margins (Klenow and Kryvstov definition) Sec. 4.3.

ICEt , ECEt Intensive and extensive margins (Caballero and Engel definition) Sec. 4.3.

Note: Steady states of these objects are indicated by dropping time subscripts.

Deviation between time t value and steady state is denoted by ∆.

Sector-specific shocks

πn,t Inflation rate in sector n Sec. 4.4.

µn Sector-specific mean inflation Sec. 4.4.

An(L) Sector-specific lag polynomial on aggregate shocks Sec. 4.4.

Bn(L) Sector-specific lag polynomial on sectoral shocks Sec. 4.4.

ut Aggregate inflation shock identified by MMW09 methodology Sec. 4.4.

vn,t Aggregate inflation shock identified by MMW09 methodology Sec. 4.4.

εzt True shock to Taylor rule Sec. 2.3.

An,t Shock to average productivity in sector n Sec. 4.4.

εn,t Unexplained residual inflation in sector n Sec. 4.4.
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Table 1: Adjustment specifications

Specification Adjustment probability λ(L) Mean gains, in units of time: G(P,A,Ω)/W (Ω)

Calvo λ̄ λ̄L(P,A,Ω)

Fixed MC 1 {L ≥ α} λ (L(P,A,Ω)) [L(P,A,Ω)− α]

Woodford λ̄/[λ̄+
(
1− λ̄

)
exp(ξ(α− L))] λ (L(P,A,Ω))L(P,A,Ω)

Stoch. MC λ̄/[λ̄+
(
1− λ̄

)
(α/L)ξ] λ (L(P,A,Ω)) [L(P,A,Ω)− E (κ|κ < λ (L(P,A,Ω)))]

SSDP λ̄/[λ̄+
(
1− λ̄

)
(α/L)ξ] λ (L(P,A,Ω))L(P,A,Ω)

Note: λ(L) is the probability of price adjustment; L is the real loss from failure to adjust, as a function of firm’s price

P and productivity A, and aggregate conditions Ω. G represents mean nominal gains from adjustment; dividing by

the nominal wage W converts gains to real terms. λ̄, α and ξ are parameters to be estimated.
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Table 2. Steady-state simulated moments for alternative estimated models and evidence

Model Productivity parameters Adjustment parameters

See eq. (8) for definitions See Table 1 for definitions

Calvo (σε, ρ) = (0.0850, 0.8540) λ̄ = 0.10

Fixed MC (σε, ρ) = (0.0771, 0.8280) α = 0.0665

Woodford (σε, ρ) = (0.0924, 0.8575)
(
λ̄, α, ξ

)
= (0.0945, 0.0611, 1.3335)

Stochastic MC (σε, ρ) = (0.0676, 0.9003)
(
λ̄, α, ξ

)
= (0.1100, 0.0373, 0.2351)

SSDP (σε, ρ) = (0.0677, 0.9002)
(
λ̄, α, ξ

)
= (0.1101, 0.0372, 0.2346)

Moments Calvo FMC Wdfd SMC SSDP MAC MD NS KK

Frequency of price changes 10.0 10.0 10.0 10.0 10.0 20.5 19.2 10 13.9

Mean absolute price change 6.4 17.9 10.3 10.0 10.1 10.5 7.7 11.3

Std of price changes 8.2 18.4 13.6 12.2 12.2 13.2 10.4

Kurtosis of price changes 3.5 1.3 4.0 2.9 2.9 3.5 5.4

% price changes ≤5% in abs value 47.9 0.0 37.0 26.3 26.3 25 47 44

Mean loss in % of frictionless profit 36.8 10.6 37.4 25.6 25.6

Mean loss in % of frictionless revenue 5.2 1.5 5.3 3.6 3.6

Fit: Kolmogorov-Smirnov statistic 0.111 0.356 0.038 0.024 0.025

Fit: Euclidean distance 0.159 0.409 0.072 0.060 0.056

Note: Price statistics refer to non-sale consumer price changes and are stated in percent. The last four columns report

statistics from Midrigan (2011) for AC Nielsen (MAC) and Dominick’s (MD), Nakamura and Steinsson (2008) (NS), and

Klenow and Kryvtsov (2008) (KK). To calibrate the productivity parameters ρ and σ2
ε, together with the adjustment

parameters λ̄, α and ξ, we minimize a distance criterion with two terms, (1) the difference between the median frequency

of price changes in the model (fr) and in the data, and (2) the distance between the histogram of log price changes in

the model (histM ) and the data (histD): min(25 ‖fr − 0.10‖+ ‖histM − histD‖).
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Table 3. Variance decomposition and Phillips curves of alternative models

Data SSDP model Calvo model FMC model

Std of quarterly inflation (×100) 0.246 0.246 0.246 0.246

% explained by nominal shock 100 100 100

Money growth rule (see eq. 16-17)

Std of money growth shock (×100) 0.174 0.224 0.111

Std of detrended output (×100) 0.909 0.586 1.053 0.121

% explained by money growth shock 64.5 115.9 13.3

Slope coeff. of the Phillips curve 0.598 1.069 0.134

Standard error 0.004 0.039 0.005

Taylor rule (see eq. 18)

Std of Taylor rule shock (×100) 0.393 0.918 0.129

Std of detrended output (×100) 0.909 0.995 2.741 0.134

% explained by Taylor rule shock 109.6 301.6 14.7

Slope coeff. of the Phillips curve 1.055 2.785 0.126

Standard error 0.093 0.290 0.006

Note: for each monetary regime (Taylor or money growth rule) and each pricing model, the nominal shock is scaled

to account for 100% of the standard deviation of inflation. The volatility of output in the data is measured as the

standard deviation of HP-filtered quarterly log real GDP. The “slope coefficients” are the estimates of β2 in a 2SLS

regression of (log) consumption on inflation, instrumented by the exogenous nominal shock. The first stage regression

is πqt= α1+α2µ
q
t+εt, and the second stage is cqt= β1+β2(4π̂

q
t ) + εt, where π̂q

t is the prediction for inflation from the

first-stage and the superscript q denotes conversion to quarterly frequency.
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Fig. 1. Price change distributions and adjustment function

Note: size distribution of changes in log prices: data vs. models (left panel). Adjustment function λ for alternative

values of state dependence ξ (right panel).
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Fig. 2. The real effects of nominal shocks across models

Note: responses of inflation and consumption to an iid money growth shock (top row); responses to a correlated money

growth shock (middle row); responses to a Taylor rule shock (bottom row). Inflation responses are in percentage points;

consumption responses are in percent deviation from steady-state. Lines with dots - benchmark SSDP model; lines with

squares - Calvo; lines with circles - fixed menu costs.
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Fig. 3. Price dispersion across models

Note: responses to a correlated money growth shock (top row); responses to a Taylor rule shock (bottom row). The

responses are in percent deviation from steady-state. Lines with dots - benchmark SSDP model; lines with squares -

Calvo; lines with circles - fixed menu costs.
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Fig. 4. Inflation decomposition across models

Note: decomposition of the inflation response into an intensive margin, extensive margin, and selection effect (see eq. 54).

Top row: responses to a correlated money growth shock. Bottom row: responses to a Taylor rule shock. The responses

are in percentage points and sum up to the total inflation response shown in Fig. 2. Lines with dots - benchmark SSDP

model; lines with squares - Calvo; lines with circles - fixed menu costs.
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Fig. 5. Sectoral price responses to shocks identified from model-generated data

Note: responses of sector-specific prices to “sector-specific” shocks (left column) and to “aggregate” shocks (right

column), estimated from SSDP model-generated data. One- and two-standard-error bands shown. Simulated economy

consists of 79 sectors with 8, 64, or 512 firms with equally-weighted products (top three rows), or 512 firms with product

weights satisfying Zipf’s law (fourth row). Simulated economy is subject to aggregate Taylor rule shocks and firm-specific

productivity shocks that are uncorrelated across firms; sectors are defined as fixed sets of unrelated firms. Shocks are

identified by applying the procedure of Mackowiak, Moench, and Wiederholt (2009).
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Fig. 6. Inflation variance contribution of sector-specific shocks identified from model-generated data

Note: share of variance of sector-specific prices explained by “sector-specific” shocks, as a function of number of firms

per sector, estimated from SSDP model-generated data. Simulated economy consists of 79 sectors with equally-weighted

products (line with stars), or with product weights satisfying Zipf’s law (line with circles). Simulated economy is

subject to aggregate Taylor rule shocks and firm-specific productivity shocks that are uncorrelated across firms; sectors

are defined as fixed sets of unrelated firms. Shocks are identified by applying the procedure of Mackowiak, Moench, and

Wiederholt (2009).



Figures for “Distributional Dynamics with Smoothly State-Dependent Pricing” 8

0 20 40 60
0

0.5

Responses to sectoral productivity shock

8 
fir

m
s

0 20 40 60
0

0.5

1
Responses to aggregate interest rate shock

0 20 40 60
0

0.5

64
 fi

rm
s

0 20 40 60
0

0.5

1

0 20 40 60
0

0.5

51
2 

fir
m

s

0 20 40 60
0

1

2

0 20 40 60
0

0.5

Months after shock

51
2 

zi
pf

 fi
rm

s

0 20 40 60
0

0.5

1

Months after shock

Fig. 7. Sectoral price responses to true shocks in model-generated data

Note: responses of sector-specific prices to “sector-specific” shocks (left column) and to Taylor rule shocks (right column),

estimated from SSDP model-generated data. Simulated economy consists of 79 sectors with 8, 64, or 512 firms with

equally-weighted products (top three rows), or 512 firms with product weights satisfying Zipf’s law (fourth row). Sim-

ulated economy is subject to aggregate Taylor rule shocks and firm-specific shocks that are uncorrelated across firms;

sectors are defined as fixed sets of unrelated firms. “Sector-specific” shock is the change in sector-specific weighted

average productivity.


